Simple ROI Cone–Beam Computed Tomography

Michael Knaup, Clemens Maß, Stefan Sawall and Marc Kachelrieß

Abstract—High spatial resolution and large field of measure-
ment are often contradictory demands, especially in x–ray cone–
beam CT. On the one hand the number of detector elements
are limited to typically 1024 × 1024 to 4096 × 4096. On the
other hand CT requires to completely cover the lateral field of
measurement (FOM) with the detector. If the number of detector
elements in the lateral direction is called M and the diameter
of the field of measurement is D the spatial resolution that can
be achieved is in the order of D/M.

Zooming into an object by a factor of 10, say, which can be
done by decreasing the distance of the focal spot to the isocenter
with high image quality and high computational performance.

Thereby we were aiming at a robust and efficient solution
developed and implemented three methods that use a priori
for the data missing in the high resolution scan. These are
the data completion, the data filtering and the data weighting
method. Thereby we were aiming at a robust and efficient solution
with high image quality and high computational performance.

I. INTRODUCTION

IMAGING at high spatial resolution in objects with a large
transversal diameter requires to challenge the problem
of transversal data truncation. For example the specific case
we are interested in are objects fitting into a $D_p = 60$ mm
diameter field of measurement (FOM) that shall be scanned
with a circular cone–beam CT scanner whose flat detector
consists of 2000 × 2000 elements. A standard scan would allow
us to achieve a spatial resolution of roughly 30 μm assuming
the focal spot size to be small enough. However, we are aiming
at high–resolution imaging a $D_H = 6$ mm diameter region of
interest, the ROI, with roughly 3 μm spatial resolution. To
zoom into the object and increase the scanner’s magnification
by a factor of 10 the distance of the focal spot to the isocenter
can be reduced by the same factor, for example. The projection
data p_H of this high resolution scan are, however, truncated
in the lateral direction. To compensate for the information
missing in the high resolution scan we use the projection data
p_L of the standard or overview scan, which we will refer to
as the low resolution scan in the following.

For some objects or scanner geometries, and for large zoom
factors, it may happen that the x–ray source or the detector
would collide with the object during the high resolution circle
scan. To workaround this problem one could use object–
dependent non–circular trajectories, as we did propose in
reference [1] several years ago. Due to practical reasons
and due to the scanner design constraints we are, however,
restricted to certain scan trajectories (in our case circle scans
or spiral scans). To avoid collision we can neither acquire a
full 360° data set nor even a 180° data set, in general. Hence
it may happen that the high resolution scan is a limited angle
scan that further suffers from lateral data truncation.

The literature describes several methods to do region–of–
interest CT, which means to perform reconstruction from
truncated data. All methods deal with the truncation problem
and do not allow for a limited angle high resolution scan.

All practical solutions described make use of the low
resolution data p_L to complete the data missing in p_H. This is
either done in the rawdata domain itself, e.g. by rebinning, or
it is done by reconstructing the low resolution data to obtain a
low resolution volume f_L which can be forward projected
using the geometry of the high resolution scan to provide
rawdata that completes p_H [2], [3], [4], [5], [6], [7].

Further on, there are numerous methods that see reconstruc-
ting from the high resolution data only without having
low resolution overview scans available. Those are either of
truncation–correction type with some kind of extrapolation
designed for diagnostic purposes which yield less quantitative
results [8], [9], [10], [11], [12], [13] or they are mathematical
tweaks including some approximation or highly restrictive a
priori assumptions [14], [15], [16]. A promising new interior
tomography approach is based on compressed sensing which,
however, requires long reconstruction times and the assum-
ption of piecewise constant objects [17], [18], [19]. Due to
these undesired properties these methods are considered to
be impractical for our purposes and therefore not within the
scope of this paper.

In principle, the first class of algorithms, that makes full
use of the low resolution overview scan, provides adequate
image quality for our purposes. However, one will run into
significant performance problems whenever the focal spot
trajectory of the high resolution scan approaches the convex
hull of the object. In this case the fan angle of the completed
high resolution scan approaches 180° and a very large number
of additional detector channels would be needed to complete
the truncated region of the high resolution scan.

While one can certainly sidestep those issues, e.g. by using
a virtual curved detector in place of a flat detector or by
performing the forward projections on a sparse grid instead
of using the high resolution grid, we propose two simple
rawdata–based methods that require reconstructions of p_L but
that do not require forward projections at all. It should be noted
that our methods can easily be combined with the possibility
of laterally shifting the detector to increase the object coverage
or the spatial resolution by another factor of two [20], [21],
[22], [23]. In this study, however, we did not make use of this
option and only deal with data from non–shifted detectors.
II. MATERIALS AND METHODS

We discuss the reconstruction of cone-beam CT data of the form

\[p(\alpha, \vartheta, \gamma) = \int_0^\infty f(s + \lambda \Theta) \]

with \(s = s(\alpha) \) being the source position at time (or angle) \(\alpha \) and

\[\Theta = \begin{pmatrix} -\sin \vartheta \cos \gamma \\ \cos \vartheta \cos \gamma \\ \sin \gamma \end{pmatrix} \]

being the direction vector of a ray emerging at \(s(\alpha) \) in the direction specified by the angles \(\vartheta \) and \(\gamma \). The rawdata are denoted as \(p(\alpha, \vartheta, \gamma) \) and the object to be reconstructed is \(f(r) \). Due to the limited detector size we will conduct two scans of the above type. One overview scan which covers the complete object and thereby results in low resolution data and one high resolution scan that covers only an ROI of the object. We use the subscripts \(L \) and \(H \) to distinguish between both scans.

Aiming at Feldkamp-type approximate image reconstruction we assume the source trajectory to approximately lie in a plane parallel to the \(x-y \)-plane and we assume the rotation axis to be parallel to the \(z \)-axis. Note that even if the scanner is performing exact circle scans the rotation axes of the low resolution overview scan and the high resolution scan do not necessarily coincide because the rotation center of the high resolution scan is determined by the position and size of the ROI.

Since we perform approximate and Feldkamp-type image reconstruction the angle \(\gamma \) of the ray is used for length correction only. It does not play a role in the data consistency and weighting criteria discussed below. Therefore we may safely drop \(\gamma \) in the following and restrict ourselves to plane considerations, i.e. to the two dimensions \(x \) and \(y \).

To achieve data consistency and to define appropriate weighting functions it is necessary to parameterize a ray by its angle \(\vartheta \) and its distance \(\xi \) with respect to the origin of the coordinate system. While \(\vartheta \) is already well defined we obtain \(\xi \) as a function of \(s \) and \(\vartheta \) as

\[\xi = s \cdot \vartheta = s_x \cos \vartheta + s_y \sin \vartheta \]

where we defined

\[\vartheta = \begin{pmatrix} \cos \vartheta \\ \sin \vartheta \end{pmatrix}. \]

The ray specified by \(\vartheta \) and \(\xi \) is the line

\[x \cos \vartheta + y \sin \vartheta = \xi. \]

Image reconstruction can be performed if the data are complete and if data redundancies are properly normalized by defining a weighting function \(w(\vartheta, \xi) \) that is zero wherever rays are missing and that fulfills

\[\sum_k w(\vartheta + k\pi, (-)^k \xi) = 1, \]

as discussed in reference [23].

Although the methods presented work for general focal spot trajectories the CT scan modi we have in mind rather perform approximate circular scans. Restricting ourselves to such trajectories later allows us to formulate explicit equations for the weighting functions, which is more convenient for the reader. Therefore we introduce the circle trajectories

\[s_L(\alpha) = \begin{pmatrix} -R_F \sin \alpha \\ -R_F \cos \alpha \\ 0 \end{pmatrix} \quad \text{and} \quad s_H(\alpha) = \begin{pmatrix} -R_H \sin \alpha \\ -R_H \cos \alpha \\ 0 \end{pmatrix} + o \]

with \(R_F \) denoting the radii of the low and the high resolution scan trajectories, respectively, and with \(o \) being the isocenter of the high resolution scan. We make use of these when defining the weight functions below.

In total we compare three different methods to perform ROI tomography when sufficient overview data are present: the data completion method which is in wide use already, the data filtering method, and the data weighting method. To our knowledge, the last two methods are new.

A. Data Completion Method

The classical data completion methods perform a forward projection of a low resolution overview volume \(f_L \) to complete data missing in the high resolution scan. While this is typically done to complete truncated data the same procedure could be used to solve the limited angle problem. As mentioned above the data completion may suffer from low performance and require a significant amount of memory.

To become more formal let us introduce some notation. Let \(X_L \) denote the x-ray transform corresponding to the overview scan and let \(f_L = X_L^{-1} p_L \) be the said overview volume reconstructed from the measured low resolution data \(p_L \). Let \(X_H = X_M + X_U \) be a decomposition of the high resolution x-ray transform into rays that have been measured and those that are unmeasured. The high resolution projection data are denoted as \(p_H \) which we assume to be zero for all unmeasured rays, i.e. in the truncated region and in the regions where the projection angles are missing.

Using this notation the data completion method is given by the equation

\[f_H = X_H^{-1} (p_H + X_U f_L). \]

B. Data Filtering Method

Equation (2) is equivalent to

\[f_H = f_L + X_H^{-1} (p_H - X_M f_L) \]

because we have \(f_L = X_H^{-1} (X_U f_L + X_M f_L) \) due to the linearity of the x-ray transform. The latter equation, however, has a different interpretation. It implies that the rawdata obtained by forward projection of the overview scan are subtracted from the measured high resolution rawdata in the measured region(s), and that those rawdata are reconstructed and added to the low resolution overview images.

While this sounds interesting a closer look at the subtraction term

\[p_H - X_M f_L \]
reveals that it is the difference between high resolution measured raw data and low resolution virtual raw data and thereby must be equivalent to a high–pass filtering of the measured data. If \(h \) denotes an appropriate high–pass filter then we may summarize our findings as

\[
p_{H} - X_M f_L = h * p_{H}.
\]

Hence, we can obtain the high resolution reconstruction as

\[
f_{H} = f_L + X_H^{-1} (h * p_{H})
\]

(3)

which does not involve any forward projections.

To find the appropriate high–pass filter let us go to Fourier domain and let \(\text{MTF}_L(u) \) and \(\text{MTF}_H(u) \) be the presampling MTFs of the low resolution overview scan and of the high resolution ROI scan, respectively, both being scaled to the MTFs of the low resolution overview scan and of the high resolution domain and let \(\text{MTF} \) which does not involve any forward projections.

Then, the high–pass filter \(H(u) \) should have the property

\[
\text{MTF}_L(u) + \text{MTF}_H(u) H(u) = \text{MTF}_H(u).
\]

Solving for \(H(u) \) yields

\[
H(u) = 1 - \frac{\text{MTF}_L(u)}{\text{MTF}_H(u)}.
\]

Note that the simplicity of the data filtering method is appealing. Although the method is analytically equivalent to the completion method this is not true numerically. The downside of the data filtering method is increased image noise and increased susceptibility to artifacts in the high resolution region since the method just adds a correction term to the low resolution data and thereby cannot eliminate image noise or artifacts inherent in \(f_L \).

C. Data Weighting Method

Our third method has two advantages: the advantage of the data completion method of not having artifacts propagating into the high resolution ROI and the advantage of the high–pass filtering method of being computationally highly efficient. This is achieved by designing appropriate weighting functions \(w_L(\vartheta, \xi) \) and \(w_H(\vartheta, \xi) \) that shall be multiplied to the low and high resolution raw data, respectively.

To start, let us define a redundancy weight \(w_R(\vartheta, \xi) \). Whenever the scan range exceeds \(180^\circ \) plus fan angle we need to either weight the data with a short scan weight, which is also known as the Parker weight function, or if the scan exceeds \(360^\circ \) we need to weight the data with the overscan weight function. These redundancy weight functions can be taken from reference [23], for example. Since the focal spot trajectory of the low resolution and of the high resolution scan differ, in general, we need to use two different redundancy weight functions \(w_{RL}(\vartheta, \xi) \) and \(w_{RH}(\vartheta, \xi) \), respectively. The redundancy weights fulfill equation (1) as shown in reference [23].

In addition a weight function \(w_M(\vartheta, \xi) \) is needed whose support corresponds to the measured high resolution data. This means that \(w_M \) is zero wherever the high resolution scan has missing rays and it smoothly increases to one where measured high resolution data are available. Hence \(w_M \) masks out the truncated regions of the detector and the unmeasured angular positions.

We now set

\[
w_H(\vartheta, \xi) = w_{RH}(\vartheta, \xi) w_M(\vartheta, \xi)
\]

\[
w_L(\vartheta, \xi) = w_{RL}(\vartheta, \xi) (1 - \sum_k w_H(\vartheta + k\pi, (-)^k\xi)).
\]

Then

\[
f_H = X_L^{-1} p_L w_L + X_H^{-1} p_H w_H
\]

(4)

yields the final volume in the high resolution ROI.

To see that everything is properly normalized let us temporarily abbreviate \(w(\vartheta + k\pi, (-)^k\xi) \) as \(w(k) \). Keeping in mind that \(w_{RL} \) is properly normalized, because \(\sum_k w_{RL}(k) = 1 \) by definition, we are now ready to check whether \(w_L + w_H \) is properly normalized. We find

\[
\sum_k (w_L(k) + w_H(k)) = \sum_k (w_{RL}(k)(1 - \sum_l w_H(k + l)) + w_H(k)) = \sum_l w_H(l)(1 - \sum_k w_H(l)) + \sum_k w_H(k) = \sum_k w_{RL}(k) + \sum_l w_H(l)(1 - \sum_k w_{RL}(k)) = 1.
\]

To conclude this section, let us give an example of how to define the weight function \(w_M(\vartheta, \xi) \) that is smooth and masks out the unmeasured regions for the simple case of scanning a cylindrical high resolution ROI of radius \(R_{MH} \) and center \(\vartheta \).

Note that a ray through the center of the ROI has the lateral coordinate \(\xi_C = o \cdot \vartheta \) which is a function of the angle \(\vartheta \), in general.

Let \(s(x) \) have the properties \(s(-x) = -s(x) \) and \(s(1) = 1 \). Given that we apply the data weighting method to sampled data it is also recommended to choose \(s \) to be smooth. We use \(s(x) = \sin(\frac{1}{2} x) \) for our numerical experiments. Now we can define the mask function which in this case is a simple radial transition weight function

\[
w_M(\vartheta, \xi) = \frac{1}{2} \left\{ \begin{array}{ll}
0 & \text{if } \xi < \xi_A \\
1 + s(\frac{2 \xi - \xi_A}{\xi_B - \xi_A} - 1) & \text{else if } \xi < \xi_B \\
1 - s(\frac{2 \xi - \xi_D}{\xi_E - \xi_D} - 1) & \text{else if } \xi < \xi_D \\
2 & \text{else if } \xi < \xi_E \\
0 & \text{else}
\end{array} \right. \]

that is zero in the outer region and smoothly increases to one in the inner region of the high resolution scan. The parameters \(\xi_A < \xi_B < \xi_C < \xi_D < \xi_E \) are functions of \(\vartheta \) and specify the lateral detector limits of the high resolution scan, and the transition regions where the weight smoothly increases from zero to one, and the center of the detector, as discussed above.

With \(\xi_C = \vartheta \cdot \frac{1}{2} \pi \) we use \(\xi_A = \xi_C - R_{MH}, \quad \xi_B = \xi_C - R_{MH} + \Delta R, \quad \xi_D = \xi_C + R_{MH} - \Delta R \), and \(\xi_E = \xi_C + R_{MH} \) with \(\Delta R \) being the size of the transition zone, \(0 < \Delta R \ll R_{MH} \).
III. EXPERIMENTS

To evaluate the three methods defined in equations (2), (3) and (4) we conducted several simulations and measurements. The simulations were carried out by the analytical projection simulator RayConStruct PS (RayConStruct GmbH, Nürnberg, Germany). The measurements were done using the TomoScope HV 500 cone–beam CT scanner (Werth Messtechnik GmbH, Gießen, Germany). The tube voltage was 200 kV.

The geometry is a flat detector cone–beam geometry with about 1000 projections per full rotation and a detector with about 1000 by 1000 detector pixels of size 0.4 mm. The distance of the focal spot to the detector surface was chosen as 2400 mm and the radii of the circle scans were set to $R_{FL} = 1200$ mm and $R_{FH} = 150$ mm for the low resolution overview and the high resolution ROI scan, respectively. This results in a radius of the field of measurement of $R_{ML} = 100$ mm for the overview scan and of $R_{MH} = 12.5$ mm for the ROI scan. Thus, the ROI scan zooms into the object by a factor of eight.

IV. RESULTS

Figure 1a) shows various reconstructions of the simulated test phantom. The overview images depicts all objects within the low resolution field of measurement. A dashed circle indicates the region of interest. There is also a zoom version of the overview image which was produced by reconstructing the overview data p_L on the same voxel grid as will be used for the reconstructions of the ROI data. The three images at the bottom row of subfigure a) are the ROI reconstructions that use the three methods data completion, data filtering and data weighting to combine p_L with p_H.

The measured connector element is presented in figure 1b). The overview scan p_L can be used to reconstruct the complete object (here, a volume rendering of the connector is shown). The ROI reconstructions (one volume rendering and one transversal slice) instead only show a portion of the connector with high spatial resolution within the cylindrical ROI and low spatial resolution outside the ROI. Due to space limitations the measurement is only shown using the data weighting method.

V. DISCUSSION

Whenever an overview scan is available it is relatively simple to perform local tomography. To improve the computational performance and to reduce the memory requirements we proposed two methods that do not need to complete the truncated data of the high resolution scan and that do not need to perform forward projections of an overview volume. In fact these two methods do not even need to reconstruct the overview volume. While our preliminary results shown here give the impression that the data filtering method is of equal image quality as the data weighting method a further analysis using simulations and measurements shows that this is not always the case. Noise and artifacts that propagate from the low resolution reconstruction into the ROI cannot be removed by the data filtering method. The data weighting method, however, does not suffer from those artifacts because only very low frequencies propagate from the low resolution data into the high resolution scan.

Summarizing, we evaluated two highly promising approaches that are readily applicable for industrial tomography.
ACKNOWLEDGMENTS

The reconstruction software was provided by RayConStruct GmbH, Nürnberg, Germany. We thank the Intel Corporation and Fujitsu Siemens Computers GmbH for providing the highly performant compute hardware.

REFERENCES

